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In Table 1 we give the values of the successive approximatiom foe the stress compon- 
ents in the f~m 

l 1 
~'~ = T (2,° ~- ~'~ + "  ~ ~ ) '  %" = 7 (%° + %1 ÷ + %-) 

foe the values ~ = 0, q = -- t .6 ,  v = 0.3, which correspond to the values of the para- 
meters in [1]. This allows us to compare the results. 

Thus, the presence of nonhomogeneity implies the formation of shear streues, although 
insignificant in magnitude. In addition a quantitative variation of the maximal values 
of ~r by 9~ and of a= by 30%. is observed. 
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We con~der some problerr~ of magnetoelastic oscillations of thin elec12-ically 
conducting plates and shells situated in a stationary magnetic field. On this basis 
of the solutions, obtained by the method of asymptotic integration of the three= 
dimensional equations of magnetoela~ci ty ,  we formulate a hypothesis relative 
to the ch~acter  of the variation of the eleclzomagnetic field and of the elastic 
displacemen~ along the thickneu of the shell. This allows m to reduce the 
three-dimemional equations of magneT~elasticity to rwo-dimenslonal ones, which 
facilitates in an emential way the study of the magnetcelastic ixoblems of chin 
bodies. 

The problem of the investigation of magnetoelastic oscillations of eleeU, ically 
conducting shells in a magnetic field reduces to the simultaneous solution of the 
equations of magnetoelasticity m the domain occupied by the shell and the 
equations of the elec~rodynamies in the exterior of the shell. The equations of 
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the magnetoelast ic i~ consist of the equations of the motion of the elastic medi-  
um taking into account forces of electromagnetic origin (the Lorentz forces), and 
the equations of the elec~odynamics of a moving, electrically-conducting medi-  
um [I - 3]. 

1,  We assun~ that an isotropic thin shell of constant thicknen 2h, made of a mater-  
ial with finite electr ical  conductivity, is situated in a stationary magnetic field wiffi 
a given vec t ( x  of the magnetic induction. We assume that the magnetic and dielec~'ic 
permeabilit ies of the medium surrounding the shell are equal to one, L e. we assume 
that the shell is situated in a vacv, , rn  

The elastic and the elect~0magnetic proper~es of  the material  are characterized by 
the modulus of e las t ic i~  E ,  Poisson's ratio v, the density p, electz/c conductivity o, 
magnetic permeability ~, dielectric permeability e. We assume that none of 
quantities depend on the com~ltnates, t ime and the e lec~omagnet ic  field. 

We assume that the shell is given in a Cartetian system of coordinates ~, ~, "? (ct 
and ~ coincide with the lines of curvature of the median s~face) .  The geometry of the 
median surface of the sheI1 is such that the coefficients A ( a ,  ~), B (~, ~) of the first 
quadratic form and the principal curvatures k x (~, ~), k~ (~,  ~)are either constan~ or 
at differentia~on they behave as constants with the required degree of accuracy [4, 6].  
We also a~ume that the elastic displacemen~ of the shell and the e lec~omagnet ic  per- 
turbatiom are so small that for the investigation of the problem under consideration we 
may use the linear equations. 

At the same t ime we assume that the problem of the magnetmta~cs fz¢ the unexci~d 
. . . . .  13~e)t 'B(e) i[;~e~ D ( e h  _ _ J  '1)(1) / D ( t )  ~ ( i )  D (  '/)~, ^ ¢  +l.~a , . , . , ,  state is solved. The w~.,u,~ .~o ~ 0a, ~o~, ~o~) ~ -)o (,~oa, ~o~, ~0~j w. . . . .  " " ' 5 "  

netic induction for the exterior and the interior domains, respectively, are known, i. e. 
we assume tha¢ B~o e~ and B~o *) satisfi/the known equations and the conditions at the sepa- 
ration surface of the u~o domains [1, 2] 

ro t  Ho = 0, div  Bo = 0 (1 . i )  

I s ( F -  B(o  l . n  = O, [H o ') - -  H4 )I . n  = 0 ( i . 2 )  

Here H~ ~ = B~0 e', H~0 ') = ~-~ Bcj ) are me intensity vectors of the magnetic field 
corresponding to the exterior and the interior domains, n is the vector normal to the 
surface of the shell (interface). 

The equations of the elec~odynamics for the moving medium rakes the form [1, 2]: 
in the inmrior domain (inside the body of the shell) 

4ha i~ i OU 1 i OD (i) 
rot  HO) = - , ~ - -  [E( + -7" o-'7- × B~)~ + ~ Ot 

ro t  E(~) = t ~)B C~) div B( ~ 0, div D(t) ---- 0 ( i .3)  
C Ot ' 

in the exte~or domain (the remaining space, where we have vacuum) 

rot H( o~= t 0D (~) i OB (e) rot  E(') = div B(*) = 0, div D(') = 0 (1.4)  
C Ot ' ¢ Or. ' 

Here E and D are the intensity and the induction vecton of the electric field.U (~=, 
u,~, z~) is the displacement vector of the shell particle and c is the velocity of light 
in vacuum. 
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Assuming that the electromagnetic field does not change too fast with time, the rela- 
tion between the vectors B and H ,  E and D in the sy3tem of c o o r ~ n a ~  atxached 
to the moving interface of file two media, is r ~ e n  in the form 

BC~) . ~¢~> R ~ )  ~+~ ~> Ec ~ r ~  ~) ~'~+~ ( 1 . 5 )  + - - - ~ . ,  _+ = . ~ + ,  D - - _ . ,  - .  = ~ +  

This also means that we do not consider, in p~'ticulaL shells made of superconducting, 
fen~elec1~'ic and fc~omagnetic matexials. Obviously, at the interface of the two media 
we have the following conditiom : 

[B~ e) - -  B t~ ] .  , . n . - -  O, [H~ ) - -  H~ )] . n .  = 0 ( t .6 )  

[D¢. ~' - -  D~ )] . n .  = 0, [E~ ) - -  E~ >1 • n .  = 0 

Here n ,  is the vector normal to the interface in the moving co~dinate system. The 
vectors which characterize the elect~'omagneUc field under consideration in the moving 
coordinate system, denoted by an asterisk, can be e x p r e ~ d  in terms of the corresponding 
fixed coordinate system c~, ~, y, by the formulas [1. 2] 

i i v n × D  B . = B - - - 7 - v , ~ ×  E, H . = H - -  

I i (1.7) E ,  = E ~ - ~ - v .  × B, D ,  ---- D -r--T- vn y~i H 

Here vn is the velocity vecr~or of the displacement of ~ interface in the direction of 
the n~mal  and n is the vector normal to the interface in the fixed system of coordinates 
(~,  ~, ~,). 

2.  As indicated above, we will restric~ otn'~lves to the investigation of magneloelas- 
tic mcillatiom in the c u e  of small perturbations. Taking for the component of the per- 
turbed elecu~magnetic field 

H ~ H0 + h, E = e (2 . i )  

and raking into account that the components h~, h~, h~ and e~, e~, e~ of the induced 
electromagnetic field are small, we linearize Eqs. (1 .3) .  After some ~ransformatiom 
the problem reduces to the simultaneous integration of the following system of linear 
differential equations (here and in the sequel the indices i are omitted and k is the 
unit vector in the direction of the coordinate line "?). 

In the interior domain: 
electrodynamics equations 

roth=--- T- e-~ c O---/-XBo ~ ' - ~ - ~  p.~ ~'~w-kxBo 

rot  e f f i  ~ ah ( - -  ) 0 (2.2) c ~ divh-----0, div e ~  e ~ - - t  ~uv ' ~ 0t k X Be = 

the equations of motion of an element of the elastic shell 

H~ ~ + H~ ~ 4-. --~-, .-~ = P ~ --  B~,H~H~ (2.3) 

H~ ~ + H~ ~ + ~ --~ (H~H~'c~) = p o~ R~H,H~ 

~r~ ~r~v 0 (HIH.,~v) __ ~H~ OH~ ~H~ H, -~- + H~ ~ + -~- ~ -- ~,~H~ ~ - 



Maj,,netoelssticl~y of thin shells and plates 10~ 

HI, H 2 

~U~ t 
P ~ - -  R~H1H s 

H I = A ( I + k l v ) ,  H 2 = B ( t + k = v  ) 

are the Larr~ coefficients and R (B=, B$ ,  R~) are the force, of e lec-  

Ou.f ~ i auv 

(2.6) 

8 c ~o~ ~ e~----e~ e) ~ - -  ~ =  at 
~ :  * C 

FinaUy, we have to adjoin hem alto the boundary conditions at the ends of the shell 
and the conditions of damping at infinity of the electromagnetic perturbations. 

$. We apply the method of asymptotic integration to the system of equations (2.2) 
and (2. 3), restricting ourselves only to the construction of the fundamental iterative 

process U -  93. 
As is known, the fundamental iterative process allows us to determine the slowly dam- 

ped part of the solution, which, for example in the case of the bending problem of a shell, 
gives the p~sibil i ty to find in the first approximation that state of stress which character-  
izes the classical shell theory. Thus, the first approximation of the fundamental iterative 
process of the three-dimensional problem of the elasticity theca 7 reduces to the ~vo- 
dimensional p~oblem of the ~hell theory, conslnscted according to the hypoth~is of non- 
deformable normals ["/, 8] 

Following [ '7- 9], we assume that the intensity of the electromagnetic field induced 
in the shell, due to the thinness of the shell, varies slowly with respect to the variables 

and ~ (in the median surface), while with respect rE the variable ~' (along the thick- 
hess of the shell) it varies rapidly, 

Expanding the scale with respect to the variable ~/. according rE the formula 

~, = h~ (3.~) 

and taking into account (1.5) (the electromagnetic field varies not too rapidly in time) 

~ - -  A 

A Oa ' 

Here 
tromagn.etic origin which are determined in the following manner [3]: 

,( ) R = - 7 -  e + - 7  ot x B o  x B o  (2.4) 
In the exterior domain:  

electrodynamics equations for vacuum 

r o t  hie)= t ae(e) c Ot ' d ivh( ' ) - -0  (2.5) 

ro t  e(e) = i ah(e) 
c a t  ' dive( ' )=  0 

Thin. ~:e problem of the magnetoelastic o,¢illationt of a thin shell has been reduced to 
the simultaaeom integration of the system of equations (2.2),  (2.3) and (2. 5). Obviomly, 
to these equations we have to adjoin the conditions at the surfaces of the shell for the 
electromagnetic field, which are obtained from the cond/tions ( 1  7) by linearization 
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and (3. I), we assume chat the rapidiW of the variation of the magnetic and electric field 
intemities induced in the shell is not too large with respect to all fot~ variables ~, ~, 
~ , t  

In the following we will not give the compum~om related to che asymptotic int~g~a- 
lion of gqs. (2.3), since we assume chat ~ resul~ of [8] hold also for che pcoblem under 
cons/deraUon. 

Taking into account (3. I),  we rewrim the linearined eluat iom (2.2) in the following 

i Ohv Oh a 4~a 

form: 

h -t aha i Oh~ - - - - B o ~  at /J -j- 
Og A Oa 

' - + 

Oea e~- - t  Bo~ O~uv 
c Ot ~ "~--" ' 

- - - -  I t (  0% 4~n e~ + "U B ~  Ot 

s Oe~ ~ - - i  O~uw 
ot "+ :~ Bo."~ir- 

i { au~ Ou~ ~] z 0% 
oh~ ~ Oha ~ e~ ~ "7- \ B°~ ot Boa-W-) ]  + "7" ot (3.2) 

i 0% i 0% Oe e ~ - - i  (Boa O~u~ Bo~ O~u~) 

t ~e~ i Oea ~ Ohx t Oev h -1 ae~ ~ Oh a 
" W ~  - - T - ~  " =  ¢ o~ ' J~ o~ - ~ "  = ~ o~ 

h -t Oe~ i Oe_..! ~ ~ Oh3 
O~ A o~ c Ot 

t Oha i Oh~ Oh v 
_ _  . ..L.__ h -t ----0 
A O: B - ~  " +  " ~ -  

(3.3) 

We write an arbi~ary component of the elec~omagnetlc field or of the displacement 
of the shell in che form s 

Q = h q Y, h' 'Q(,) (3.4) 
$.=I 

where q is an inmger, different for different cornponenls of the elec~mrnagne~c field 
and of the shell displacement. This has to be chosen in such a way that, after inserting 
(3.4) into Eqs. (3.2) and (3.3) and making equal to zero in each equation the coeffici-  
ents of che same powem of h ,  we should obrJtin a consistent sequence of sys~erm of equa- 
tiom for the deun~raination of the coefficienm of che expamlom (3. 4). Nunmmm solu- 
tions of the classical problems of shell theory, without considering elec~omagnetlc ef- 
fects, show that in the relXesenratiom of the displacements with the fm~nula (3.4), the 
exponent q can he selected in the following manner ['8]: 

(u~, u~, ~ )  -*- q = a (3.5) 

As far as the components of the induced elecu~magnetic field are concerned, the expo- 
nent q is chosen in the following manner: 

(ha, hs, ev) ~ q = b, (h~, ea, e~) ---* q = b -+- I (3.6) 
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Considering other variants of  the exponent q for the components of  the el~ctromag- 
netic field in the relXesentation (3.4), we obtain a contradiction. 

For'convenlence we introduce a new notation k : b - -  a + t. Inserting into Eqs. 
(3.3)  the values of the components of the electromagnetic field of the shell from (3.4), 
taking into account (3. 6) and equating the coefficients of the same ix)wen of h in each 
equation separately, we obtain the following unique (independent of k) system of equa-  
tioD$ : 

Oe~ s) t 

o :  = 

t Oe~ s) 1 

A 0= B 

Oh(S-~) 

05 v c Ot ' . O~ - -  A Oa c at 

- - - -  a~ - -  c at ' a~ A a :  B ~ (3.7) 

Equations (3.2),  after s inu l~  =ausformatiom, taking into account of (3. 5) and (3 .6) ,  
lead to the mutually distinct (for each value of k) ~ s m r m  of equations 

¢ --~. s F - - i  

/ au(s-k) au ('-~) \ l  
= '' 

' - k )  

c at + T B o =  at~ 

i ou~ 
,4 a:  ~" ~ = c at 

au~"-~+x) )] ae~ "~ 
B°. a'---T-- + 8c at (3.8) 

Equations (3.7) combined with (3. 8) form, separately for every value of k a chain of 
systems of equatiom of the fundamental iterative process, resulting in the successive 
( s = l ,  2, 3 . . . .  ) determination of the unknowns QO). In this connection we have to 
assume that ~ , )  ~ 0 for s < l ,  and also. that in the con~ructton of (~,÷1) the 
corresponding quantities Q(I~ Q(~) . .-,  (~8) are considered known. 

Let us consider different values of the number k. The case k < 0 does not Ixesent 
any intere.~, since in this case, according to (3, 8), either all  the components of the given 
(unperturbed) magnetic field must be equal to zero or we an, i re  at a con~adiction, con- 
sisting in the superpoeitinn of additional comtraints on the elastic displacements. In the 
case k = 0 , from Ec~. (3. 8) we obtain in the first approximation of the asymptotic 

integration ( S = 1) Ou~' Ou~ z) 
Bo~ ot B o = - ~ -  = 0 (3.9) 

Thus, the case k ---~ 0 is possible by satisfying the condition (3.9), which depends both 
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on the velocity of the oscillations and on the magnitude of the given magnetic field.  
For the nonstationary lxoblem, this is possible in the case when Boa = BoB = 0, i .e .  
when the given magnetic field is perpendicular to the median surface of the shell, other- 
wise one obtains an additional restriction on the elastic displacements. In this connec- 
tion, according to ( I .  2), we no~e that the given magnetic field must be c o m ~ n t  in the 
coordinate system ¢t, ~, ?.  Taking Boa = B0~ - -  0, from (3. 8) we obtain the follow- 
Lug equatiom in the case k - -  0 : 

t ohm) ohm') + "7- ot .J o at 
T - - E  - = 

0~,. A 0 7 =  c - - 7  o ~ j - -  c Ot 

t Ohm') I Oh(~') 4=z . ( , )  8 Oe(~') (3 . i0)  
A Oct "~'"~-= c ' ~ ' t  - -  c Ot 

A act J : 'B-"  0 T  ~-' 0~ = 0  

From here it is clear that for k = 0 ,  in the first approximation, the elec:,ndyuamics 
eqnatio--, do not separate from the equation, of motion of the elastic she l l  

In ~ case k == I , Eqs. (3. 8) show that even in the first approximation (s = I ) ,  inde- 
pendent of the given magnetic field, the electrodynamics equations donor separate from 
equations of motion of the she l l  

It  is easy to see that for k > t (the exponent of the intensity of the electromagnetic 
field is significantly larger than the exponent of the intensity of the shell displacements), 
in the t in t  approximation, the components of the electromagnetic field can be deter- 
mined independently from the elastic oscillations of the shell. 

We note that in the case k <: 0 , the exponent of the intensity of the electromagnetic 
field is signiflcantiy smaller than the exponent of the intensity of the shell displace- 
ments, while in the cases k == 0, k = I they differ little from each othea. 

We represent the solution of the system of equations (3. 7) and (3. 8) in the f ~ m  of a 
stun of two terms : Q(s) = Qi(s) _~. Q*O). The first term denotes the solution of the 
homogeneom system obtained by discarding the quantities whose supencript is less than 
s, while the second term denotes some particular solution of the indicated system in 
which all  the quantities whose superscript is less than s are considered to be known. 

Let us onmidct the system of homogeneous equations. Fc¢ aH k ~> 0 , those equations 
of the homogeneous system which are obtained from all  the equations of the system 
(3. 7) and the last equatiom of the systems(3.8) and (3.10). are common and have the 
form 

o,T _ O, = O, a~ --  o~"' a~ = 0  (3 . t t )  

The remaining equatiom of the homogeneous system fc¢ distinct values of k are dis- 
tinct and are obtained from the remaining equations of the corresponding systems(3.8) 



M a ~ t e t o e l a s t l ¢ l W  of  t h i n  s h e l l s  and pla ' tee  109 

and (3.10) in the form 

r ° t  h( ')  = 4nz [ e(s) @ B°~ c Ot xk ]  e OeC')+~ Ot 

r o t h ( , ) =  4n~ [ e O ) ~ . ¢  _ ~¢ OUr')a7 × B o ] + ' g - ~  ~(')ot 

ro th (  s ) - -  4zt~ e ( s ) +  e Oe (.) ( k > t )  
c c Ot 

ta = o) (3 .12)  

{k = t) (3.i3) 

(3.i4) 

h(;~, ), distinct for different values of k 

(~ = o) 

t 0h(S) "f0 h~ ) =  ; ~  ~= 

~,(s) [ I Oh(S) • ,¢0 4rt~ ds) 

Ot c 2A OttOt -1- Oe~2 'c Ot 

<,, o,= 1 
at c 2B O~t  + ~ c Ot 

(~--0) 

7 ' c at 
~p(s) ] 
~'ao (k ~ i) (3 . t8)  

c Ot 

Let us find particular solutiom. The expl'enions 
from (3. 7) independent of k 

e= = d~, 
0 

i [  t Oh~ -°') 1 Oh(3S-2) ] 
h * ( ' ) = - -  ~ A a= + ' Y "  o ' y ~ J d g  

0 

The remaining quantities am determined from the fccmulas 

e , ( S )  js(s) tt , =t~ , h.t*(s) are determined 

7 d~ 

(3A9) 

The system of homogeneous equations obtained in this way can be easily integrated fo~ 
each value of k.  In ~ case, independent of k, according, to (3. i i) ,  ~As)ai, e~, e~i ), h~ ) 
have the following form: 

~'~ °~" (=, ~, t), 4'? = ~'~ ~o (:~, P, t), h~'~ ,--t0~('~ (=, P, 0 (3.15) 

"------~ n a= +'~" aB J 

According to what we have said at the beginning of Sect. 3, we also give the correspond- 
ing expressions for the displacements [8] 

~'~) - -  u ~  (:t, ~, t) = w~ ') (:t, 'p, t) (3.16) 

o~,~') 4,  ~ _ : o , , f  
~ = ~o ') (~, ~, t) - ~ ~..~-, ~'~ = (~, ~, t) ~ 

Now, making use of (3.15) and (3.16), from E~. (3.12)-(3.14)  we can determine h ~ ,  
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0 

0 

8 

C 

r 
. , . ,  oe:,,, 
e.~ = - -  A aa + " F  

0 

- - + - 7 -  -7/Bo  o, 
,, (s-k) 0-% ) 

s o.~<') ~ - -  ~" Bo, a"-'fff~'-J d~ (3.20) c Ot -4- ~p. 
Ou~,-~, Ou~v s--':) ) ~ --  

i Bob " T T - - / j  4 m [ e ' * + ' 7 - ( B ° ' ~ c  at 

*(s) , .  (ts.-~) "~ 
,, , e ~ - - t  0 "w 
ot -'- ~ Bob ~ f d~ 

--~, ~ ep.c B 0,30t A O=Ot ]J d~ 

e,, = q~, e ~ = ¢ ,  h ~ = /  

where in the case k = 0 it is necessary to take B0~ = Bob = 0. 
In the fccmulas (3.19), (3.20), the quantities marked with an asterisk are functions of 

the variables a ,  ~, ~, t; the quantities not marked with an asterisk and having index 
less than s are assumed ¢o be known. 

As indicated above, Qo) ~ 0 for s < i .  Therefore from (3.19) it follows that 
Q*o) and Q.(2) are identically equal to zero. (Obviously, the same is the case in the 
repre!entation of the displacemenls u~, u~, u w ['7 - 9] ). 

Examining the obtained solutiom (3.15) and (3.19) of the linearlzed magnetoelast ic l~ 
equatiom, we note that in the case that the hypothesis of the nondeformable normais 
holds (3.16), the componen~ e=, e~ and h v of the Induced electromagne~c field, up 
to the ~ appeoxlmatio~ of the asymptotic integration, do not depend on the coordi- 
nate ~ .  

Thin, similar to the classical theory of thin shells [4 - 6], we can formulate the fol- 
lowing fundamental hypotheses for the magnetoelascict~y of a chin shell (assumptions 
(a) and (b) taken f~om the c lauica l  theory of shells, are given here for the sake of 
comple tenes ) :  

a) the normal to the median surface of a rectilinear element of the shell remains, 
after deformation, rectilinear and normal to the deformed median surface of the shell 
and pEe~rves i~ length; 

b) the normal sness av can be neglected In comparison with the other sU~ses ; 
c) the tangential components of the Intensi~ v e c ~  of the Induced electric field 

and the normal component of the Intensity .vecTor of the induced magnetic field do not 
vary along the thickness of the she l l  

Obviously, all  the three auumpttons have to be considered as individual parts of a 
unique hypothesis, on the basis of which the three-dimenslonal problem of the magneto-  
e l a ~ i c i ~  of a continuous body reduces to the lwo..dimensional m a g n e t o e l a ~ c i ~  prob- 
lem of a thin shell. 

4 .  The above formulated fundamenLal hypotheses for the interior l~oblem can be 
writ'ten analytically in the following manner:  

u ~ = u - - -  X- o:;~, u , ~ = v - - - g - o - -  W,  u ~ = w  
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Hem u v, w are the desired displacemen~ o f l ~  median surface of the shell; q~, ~?, 
/ are the debited functions of the excited eleeU'omagnetic field (all quan~tie~ am func- 
t,tom of ~, ~, t). 

The equatiom of motion (2.3) of the elecU'tcally conducting shell can be written in 
w~r~ of frames and momems in the form 

t OT~ , I OTa~ O~u 
O~ ~- "T" ~ = 2 p h - ~ -  - -  X,, (4.2) 

t OT~ t OT,,~ ----2ph 0%, --X~ 
T ~"~ ' ' +  A Oa "Of + 

i OSMa 2 O~Maf~ | O~M~ 

i Oma t Oraf~ 

Here T~, T~, T ~ ,  M~, M~, M ~  ate the in~'ic~ forces and momenta, which in 
~errm of the displacements of the median surface can be ~peesen~d by the usual elas- 
vici~ relatiom [4 -  6] 

T~, ---- ~ _ .~-----~+ "A 0"7" + k~w ~ t --  ¢ \ B ~ -4- k~w . 

T~ = ,, ' ~ k " ~ - - ~ "  "r k~w + i..-------~ 'A  Oa "+" kxw (4.3) 

Eh ( i Ov , i Ou 
T ~  = ~ \~4 . . W - r - - ~ -  o-~..), 

2Eh a ( t 
M, ,  = - -  3 (t . ~a) ' A~ 

2~h ~ ( I 
M ~ =  3(t--~a) m, 

2Eh s i 0 ~ w 

02~ , v 02w '~ 
o~, " r - ' ~ "  o'gCr-/, 

Oau, v ~ w  \ ) 
where P is the n,xmal component o f ~ e  exmrior surface load, X (X~, X~, X.t), 
m (m=, m~, re.f) am the fm'ces and moments of elecl~romagne~te origin which accord- 
ing to (9..4) are determined in the following manner: 

h h 

For the remaining componenl~ h~, h~, e~ of the electromagnetic field inside the shell, 
we obtain from Eqs. (2. 2) by integration with respect to 7 f~om zero to "~ and by taking 
into account (4. I) and the surface conditions (2. 6) 

h ~ =  2 + ~ ~,-'2-b~ + ' 7 "  o-7 ' ' c ' ~  +-' 

--¢,  a¢,.Ti- + A O= Ot a~ ~ , ~p. a~ or"-' 

h + ' h 3- / 1 O] O~p 4 ~  ) ]1% = 3 "- e 

( a  ) +"+ Ov CF. ~ I a~ 4rc~ Ow a 6~w a~ --~ ~ cztL 
c z ~ Ot B OB Ot , Ot i 

(4.5) 
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2 7 A On ' B O~ ! et~c a,~ A Onot a~ B Of 3b t /  
Y n - h  

ai 
0 0 0 

"f h - - h  

0 0 0 

The plus and minus supettcripts indicate the values of the corresponding quantities for 
y = h and V = - - h .  

Thus, all  the components of the e lecuomagnet ic  field of the shell, the forces and the 
moments which occur in the magnetoelastic equatiom of the shell, can be represented 
by six unknown functions (u, v, w, ~, ~ ,  ]) and by the values of the components h=, 
h~, e.~of the electromagnetic tlelO at the surfaces of the shell 

If we restrict ourselves to the investigation of the proper problems of the mechanics 
of an elastic shell, then, as we will see, the fundamental resolvent equations will contain 
only the unknown function of the values of the ncxmal component of the electric field 
at the surfaces of the shell (~ -~- ~ h). 

The values of e v at the surfaces of the shell can be represented in terms of the unknown 
functiom in the following manner:  

I Ou h i~w 
t Bo+~ - ~  B ~  A OaOt e"+ = - -  "7" 

e~g ~ ~ ~ i ,  
[ B ~  Ou h Otw 

"~ + Bo~ e Of~ Ot J 

Or h~ O~u, "1 

Formulas (4. 6) are obtained from the condition of the vanishing of the normal compon- 
ent of the current density on the surfaces "~ = ~ h, i . e .  from the condition (since the 
sbell is in vacuum) [ i (.~.¢ ) ]  

e + - ~  × 8 o  . n = O  (4.7) 

5.  It  remains to write out the resolving equations relative to the six unknown func- 
tions of the problem. They can be obtained from the comideration of the simultaneous 
equations of magnetcelasticity.  

Subgtituting into the motion equations (4. 2) of the shell the values of the interior 
forces and moments from (4. 3), as well as the forces and moments of electromagnetic 
origin from (4. 4), we obtain, taking into account (4. 5) and (4. 6) 

i ~u i--vatu i+v O~v k~+vksaw i--~ ~ r. 
A~ a=, + 2B, 0~, + 2AB a= a~ + A a= ~- ~ ' 7 "  [N~ + 

/ i aq) i o~ i av 

b=, "Td + a ~  A O= Ot B ---- - ' - - T " - -  

~Z.a_.~.a_ ~ ~ O~v t - -  v ~v  l + v Ozu + ~ + vkl Ow + i - -  v n * L[ 

( l..a~__~_ i &~ ~ , I { Ov Ou ~. Ow 
c= \ A O= + - B " - ~ ' I  -v" "7- \ F"" '~ i"  - -  F ~ " ~ "  + u ~  -Ti"v" 
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~f~" A Oct at "~ 'O- '~ t JJ  = "  e Or" 

{ I O'~w : 2 041o i ~ w  3 [kx~A,k, au k,.~-vk, an 
D -2r a%-V -, A"~ aeo~ + "~- Y~" + ~ "" act ~- ~ a--~ + 

, ]} ) (k~ ~ ~ k~ ~ + 2~kxk~) w + - " ' "  ar~ = "7" ' A act ba ~ -+- 

b f ~ - - . . ~  8~ ] (p "+- cv ' A Oct B + A z Oct a A B  OuO~ ~ 

t OL~'~ Ov ( t 
. y .  ~ } . ~  - -  b~, + b ~  A 

'A  O'~ B "~ / A OctOt "~- A 
L~,~ OZu L~a O"-u La~ O~v 
A O=~Ot "-B'--'~Ot A 

?¢aa OSw ~ I 

B o~ /-~-i-+ .bs'~ A act 
Ocav t Oe~x ) Ou, 

oct "+ B ~ . ot 
ON=.3 1 ONaa~ 1 O~w . 

Laa O~v .Ari~ ~ O~w 
octot + B o~ at . ~  o4~t  (5.1) 

(N:s + , .  ~ , .  o4oaotJl 

Here 
h h 

b~ = ! Bo,dT, c, = ~ "rBoidT, 
-h -~h 
h h 

ciy = 1 7BoiBofl'r, d~ --- I a~Boid'~' 

h 

gi~ = t Y~BoiBoflT, a~ --- 
-h 

Fii  ~ Ci+bj -- bli -- ~iib,~, 

L~ 1 ~ Ci+cj -- ci1 ~ ~1c~,  

h 

b~i ---- f Bo~BoidT 

g~ ---- I "~BodT 
- h  

h 

S ~aiBofl~ 
-h 

Gii = hCi-b~ + c~i e~ di~ - -  ~i~c~ 

, e4x-- { 

2 (~,/' ~ a, ,3, T/ 

S ubstitut2ng the values of  the d isp lacement  components and the e l e c ~ o m a g n e t i c  field 
from (4 .1)  and (4. 5) into the e l ec~odynamics  equations, takinR inw account  (4 .6)  an(] 
averaging ove~ the th ickneu  of  the shell, as it is done in the theory of shells, we obtain 
the following three fundamenta l  equations : 

.4- Oct ~ ~ ~ OW" ca Or2 e: Ot 

l 02v "1 ~ - -  l 3 1 O"-w ) 
' . Oa Ot/ 

l (~3~C 

,4 04 or-' 

4x~ 3 /, O"w . I OSw 
E-~ \~ ~ " +--~- ~ - 

AB Oa 

.4"- o4"- r B~ o.S2 "~'- ot~ : ot = c'Tr-~:'~\ ~o-'Tr+ (5.2) 
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I 0"-/ I O"-! ~ O~f 4m~ O! 4 m  3 ~ I O (l Ou) , 

, o ( o , )  , o ( , o ~ )  , o ( o o )  , o ~ , o , ~  

h h 

-h -h 

In addition to Eqs. ( 5 . 2 )  we also obtain the fol lowing condtt iom which estabLish the con-  
nect ion between  the surface values of  the components  of  the e l ec tromagnet i c  field 

i O, i O~ ~t Of 
A o~ B o~ + T ' T / " = 0  

t 
A 

e 8~ ~ I 1.~ 02w ha+ ~ ha- 

' O /  ,=or ' (b  Ov ow %O"-w)]  
B o1~ "7"[q~+5"~\ "'~7 " -b~  ~ ~'~'~t - 

e O~ ~ O~w hf~ ÷ ~ h 3- 
; Ot + b~ ~ .  = 2h 

( - - -  
a Ovt ~ n O~ -~ 2"~'~ A O~Ot B O-~t]  w 2h 

( ) ( ) ( - )  0 h~ ÷+h~-" t 0 ha"+h~-  4:~ae~+%- . ~ O e , t*+% 
O~ 2 B 09 2 = c 2 ~ c Ot 2 "~ 

( +  On n~ ) t O'w ( i On n , ) i  Otw] 
- -  o'o'~ -'ff - c~ A o,, ot + c,, - -.ff..~- - .ff- "Y" o-'~t J 

a Oa ' "-ff'O-~ "~-2"~ L ' ~ ' O " ~ k ~ ' ~ )  "~ 
, O C O w )  1 0 (n O'w~.s_ 1~ O ," 0 ' ~ \  1 0 ( O u )  

, o /  o , , \~ . ~ , - ~ [ ,  o (  o,,,,~ , o / n o , ~ , \ ~  
"B"~"~m"g/ ' )J  + 2he~. 70-7"  n ~ ' / + " O - ' ~ ' ~ ,  ~0-/r-')J = 0 

( ~ )  (~ ~ ) 
o'-~ , ~ - i  ~w i o n~o-z-~t + ~ . k n ~ o _ ~ )  j (5.3) 

1 o ( % " ~ - ) = =  ~ o (h .*+h . - )  4= . / t  ~'°'w 
B O~ . ot ,  2h.-' \n~. ._  + 

n Osu , O2u\ 
a oa o .  n.: ~Tr) - -  
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Zhattc -'#- n= ot' AI~ O~ ~ n~ o'gT~t ) + -g~- " ~  ,n" °fi ot / 3 

h h 

n.:= ~a,dr, n=  ~adr (~ffi=,m'r) 
- I t  - I t  

Equations (5.1) and (5.2) form a complete ~/stem of six equations with respect to the 
six unknown functions. It should be noted here that the system of equariom (5.1) ,(5.2)  
does not contain explicitly the elemenls of the solution of the e~erior  problem ; ~ is 
explained by the acceptance of the f~damenta l  hypor.besis. 

The relation between the interior and the exterior l~Oblerns is realized through the 
boundary conditiom for the unknown functions q~, ~, / at the ends of the shel l  We 
note that in some particular cases we can have conditiom at the ends of the shell for 
which the interior lxoblem is completely separated from the exterior one. We also note 
that the conditlom (5. 3) must be used as boundary conditions for the solution of the ini- 
r4al equations (1.4) of the exterior lxoblem. 

In ~ l e r  to solve concrete boundary value problems, we have w adjoin to the resolving 
differential equatiom (5.1), (5. 2). the boundary co~ditiom for the components of the 
electromagnetic field, as well as the usual conditions regarding the fixing of the edges 
of the shel l  

The condttiom for the components of the electromagnetic field are obtained from 
(1.6) where we take into account (1.5) and (1.7) and where n is the normal to the cot- 
responding end surface. For the end surface ct ---- cons t  we have 

n = i - - B  ~0~ A ~ _  J + A 0R-- '  vn----- 0"7" 

Therefore The linearized boundary conditions can be written in the following form : 

h. = - 7  + 0~ T k o - - ~ - - - ' ~ ' - ~ /  ~ A 0~ 

h~ e) h~ 
' ~ A O:t 

e~ = "7" ~ ' e~ -~ (5.4) 

e~ = e<~ ") ~ 7 z~o~ .-~ A o , t o t /  

In a similar manner one can write the conditlom at the end surface ~ = const .  In the 
:pecial case when the end surfaces are in vacuum, it is advisable to make use of condition 
(4. 7), since this condition does not contain elements of the solution of the exterior IXob - 
lem. Then, for example, we have for the end surface ct = const  

e~ --  "7- L oi~ " 37 - -  Bo-~ (5.5) ~. at BOB at/J 

In the case when the shell is fixed along the considered edge with a resting ideal conduc- 
tor. the interior problem is solved independently of the exterior one. This is explained 
by the fact that in a fixed ideal conductor the electric field is absent, i. e. the exterior 
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electric field is equal to zero (e(= ') = e~ ') = e(~ ) = 0). Then. the boundary conditions 
(5.4) for the components of the e teeuie  field obtain the form 

c Ot A O~tOt ] 

e.e= F ? t . ( . ) ( O u  T O~ ) (5.6) 
-- ~o.s Ot A Oa Ot 

Thus, examining the resolving equations (5.1). (5. 2) which describe the oscillations 
of the shell, we note'that they do not contain the components of the exterior induced 
electromagnetic field. The connection with the exterior domain (with the exterior prob- 
lem) is accomplished only through the boundary conditions at the ends. In particular, 
when the boundary conditions do not contain the elements of the solution of the exterior 
problem, for example the conditions (5. 6), the problem of the ¢xcillation of the shell is 
solved independently of the exterior problem. 

As an example we give some variants of boundary conditions ( necessary for solving 
the system of equations (5.1) ,(5.  2)) in the case when the shell is in contact at the edges 
with an ideal conductor. We give the conditions for the edge ~= coast. 

Clamped edge 

u=O,  v=O, w = O ,  Ow/Oa=O, ¢p=O, ~ = 0  

Fixed-hlnged edge 

u = O, v = O, O2wlo~  ~ = O, q~ -'-- O, VP = O 

Hinged-supported edge 

v = O, w = O, OulO= = O, O~wlOa ~ = 0 ~ = O, .@ -_ r ~ -  ~ i~ a~ 
-gi" 

In a similar way we can write down the boundary conditions for the edge ~ = c o n s t .  

8 .  For some particular cases of the exterior magnetic field, the resolving equations 
(5.1), (5. 2) for concrete types of shell and plates become entirely suitable for solving 
concrete problems. We consider some of them. 

Plate with a constant exterior magnetic field 

a:w 2h~ / B ~ a~p a : ,  ~ )  
DA~w -" 29h ~ = P + ~ \ o~ ~ - -  Bo~ ~ + Bo~ ~ - -  Bo.. + 

"g/" , at~z 

c c at' --Bo~ ~ + T - -  
8B 82¢p 4x$1~ 
c ~ 8t~ c 2 

elx a~, 4nzlx 
A ~ e '- ' at* 

aqp ~ a [4in J at. 
a - T =  c at ~ B°~ at 

v a~w ~ Bo~ a t" / j  J'~Or" ~ ~ c-.-. ~ 

O~ F a r 4~: ~ aw 
c2 at = "7- ~ L - ' 7 - " ' ° "  ~ -~ 

a2w 12 O."w 8p, Bo = . . ~ - ) ] ( A  ~___ a '  

2 B a2w ] - -  "g~ o= Bos a='$7~ ] 4- 

oo)] 
Ot 

err -- 1 ( O2w 
~ Bos aa~ 

~ B ~  ~ - -  
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Cizcular cylindrical shell  with radius of  curvature _R, situated in a constant exterior 
magnetic  field whose intensity vector is parallel to ~he elements of  the cylinder. The 
coordinates a and ~ are chosen such that the coefficients of  the first quadratic form 
should have the values A - -  I ,  B = B 

O~u , t - - v  c)"-u _z_ t ~ v O~z, .~_ v Ow p(t-- '¢~) O~u 
c)="- " 2H"- 0~-----2"- ~ 2" '~  O= 0"--~.~ ' ~ "  0 7  = E Ot"- 

t /-:- v O=u t - -  v O"-v t 0 %  1 Ou, p ( l - - v  2) O~v 
~ + " " 7  o~--~ + --~ ~ - ~ ~ = ~. or' 

D L 02~ /t-" 0~2a3: m ~ =" --m,: v ~= R ~'~ "+" + 
. 0"-w 2/:~ i a"-~l 2h3~ ~ w  

~ oao~ - -  ~'3 ~ . 3cze~R :~ 0~"0""""~ 
( B°" Ow)  

t' C Ot 

~'~ , t 6~-(p ~p~ 0:~ 4:~u ~ep e ~ - - I  Boa 03w 
O~ a ; [F 03- e"- ot"- e"- .... 0-'7-----" sp.c "R baO.BOt 

O*~ , t 0~¢ s.a o"~ 4 . ~  a¢ -'.aria i,"-et, ~ .a--I  Bo= o 
-t- "~- o'~- ~ or'- ~: 7 = - - 'g ' -  Bo,  ot: s,~c ~ x 

l e a  O°-w t O"-w \ 
) 

Shallow shell  with double curvature, situated in a constant exterior magnetic  field 
whose intensity vector is perpendicular to the median surface of the shell.  The coordi- 
nates a and ~ are chosen such that A = 1, B = I 

O"-. t - - ' " ~  O"-u t : ~ v  0"-," ' (/;1 Ow . i - - ~  z D ( 

Bo-,.,. 0u~____ o ( t - - v : )  _0'u 
,. ~T/ E or-' 

W-v t - -  v O"-v I '-- v b~u ( 
03"., 2 Oa-" "2 . ' .  ~:3, + (k.  -;-, v kO  a,t.O~ t --~v2 ~n Bo~ ~(P + 

B2~ /~,: ~ o (t -- v'q Ozc 
c Ot ] = IE Ot" 

D 5 ' w  + ~ ( ~-v- vk.,) -~- =- (k~ ~ vk 0 0--~. " (kt~ + k"~" + 2vktk~) w + 

2oh W-u' p + 2h% B ~  O~w 
' c,t'--'~- ~ - - ~  Ot 

A~p :- at: c~ Ot = ~ Boy ot"- 

c" Ot" c 2 O"'~" = c a Ot  ~ 

Adjoining to the given resolving equatiom the neee•ary boundary conditions, we can 
find the solution of  numerous magnetoela$ticity problems for plates and sheth. It is 
aBo necessary to keep in mind that in each of  the considered problems the condit iom 
(5. 3) must be saUsfied. 
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Thus, on the basis of the three'dimensional magnet~)elasticity equations, a correct 
two-dimensional ~eory  of shells and pla~es of finite conductivity has been consu~cmd. 
This themy allows us to solve magne~oelasticlty ixoblems for shells and plains having 
finite dimensions. 

The auChc~ are ~ateful  to A. L. Gol'denveizer for discussing the research and for 
valuable comments. 
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Values of the upper ori~cal buckling loads of nonsymme~-ic s~ictly convex elas- 
t ic shallow shells are determined when the relative wall thickness paramezer is 
suff/c/ently smal l  Simple relationships are derived from which the mentioned 
values can be found if the character of the loading, the shell geomeUT, and the 
methnd of fixing the edge are known. In pauing, aJn/mpt~tic expamiom of file 
solutions permitting a computation of zhe szzesz-sztain siam of shell in zhe preori- 
t ical stage are consu'uczed for ~ e  approprlate boundary value problems. As an 


