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In Table 1 we give the values of the successive approximations for the stress compon-
ents in the form

1 , ‘ 1 . - L.
"‘ma'—p_(sr"‘%'crl“k‘--'fs"n)’ Son =3 % togt . 5T

for the values ¢ = 0, ¢ = —1.6, v = 0.3, which comrespond to the values of the para-
meters in [1], This allows us to compare the resuits,

Thus, the presence of nonhomogeneity implies the formation of shear swesses, although
insignificant in magnitude, In addition a quantitative variation of the maximal values
of o, by 9% and of o, by 30%, is observed,
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We consider some problems of magnetoelastic oscillations of thin electrically
conducting plates and shells situated in a stationary magnetic field, On this basis
of the solutions, obtained by the method of asymptotic integration of the three-
dimensional equations of magnetoelasticity, we formulate a hypothesis relative
to the character of the variation of the electromagnetic field and of the elastic
displacements along the thickness of the shell, This allows us to reduce the
three~dimensional equations of magnetoelasticity to two-dimensional ones, which
facilitates in an essential way the study of the magnetoelastic problems of thin
bodies,

The problem of the investigation of magnetoelastic oscillations of electrically
conducting shells in 2 magnetic field reduces to the simultaneous solution of the
equations of magnetoelasticity 1n the domain occupied by the shell and the
equations of the electrodynamics in the exterior of the shell, The equations of
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the magnetoelasticity consist of the equations of the motion of the elastic medi-
um taking into account forces of electromagnetic origin (the Lorentz forces), and
the equations of the electrodynamics of 2 moving, electrically-conducting medi-~
um [1 - 3],

1, We assume that an isotropic thin shell of constant thickness 2.2, made of a mater-
ial with finite electrical conductivity, is situated in a stationary magnetic field with
a given vector of the magnetic induction, We assume that the magnetic and dielectric
permeabilities of the medium surrounding the shell are equal to one, i, e, we assume
that the shell is situated in a vacuum,

The elastic and the electromagnetic properties of the material are characterized by
the modulus of elasticity £, Poisson's ratio v, the density p, electric conductivity o,
magnetic permeability [, dielectric permeability e. We assume that none of these
quantities depend on the coordinates, time and the electromagnetic field,

We assume that the shell is given in a Cartesian system of coordinates @, 3, ¥ (@
and (B coincide with the lines of curvature of the median surface), The geomewy of the
median surface of the shell is such that the coefficients 4(«, B), B (a, B) of the first
quadratic form and the principal curvatures k,; («, B), &, («, [)are either constants or
at differentiation they behave as constants with the required degree of accuracy [4, 6].
We also assume that the elastic displacements of the shell and the electromagnetic per-
turbations are so small that for the investigation of the problem under consideration we
may use the linear equations,

At the same time we assume that the problem of the magnetostatics for the unexcited
state is solved, The vectors B{”(B{), ByY, BYY) and By’ (B2, BS., BYY) of the mag-
netic induction for the exterior and the interior domains, respectively, are known, i, e,
we assume that By’ and B satisfy the known equations and the conditions at the sepa-
ration surface of the two domains [1, 2]

rot Hy = 0, divB,= 0 ‘ (1.1)
(BY —B{l-n=0, (HY—H{|-n=0 (t-2)

Here HY = BYY, H)’ = p 1B are the intensity vectors of the magnetic field
corresponding to the exterior and the interior domains, n is the vector normal to the
surface of the shell (interface),
The equations of the electrodynamics for the moving medium takes the form [1, 2]:
in the interior domain (inside the body of the shell)

= 28 [po . 19U _ pa 1 op®
rot H [ E + c ot x B¢ -'LT—_-

at
rot EO = — —10_%;) , divB® =0, divD® =0 (1-3)
in the exterior dornain (the remaining space, where we have vacuum)
rot HO = -‘c—ig.;.l , Tt E© = — L ”;:e) , divB® =0, divD® = 0 (1.4)

Here E and D are the intensity and the induction vectors of the electic field, U (uq,
Us, Uy) is the displacement vector of the shell particle and ¢ is the velocity of light
in vacuum,
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Assumning that the electromagnetic field does not change too fast with time, the rela-
tion between the vectors B and H, E and D in the system of coordinates attached
to the moving interface of the two media, is taken in the form

BY = wH® BO — HY, DY =E?, DY — ¢E® (1.5)

This also means that we do not consider, in particular, shells made of superconducting,
ferroelectric and ferromagnetic materials, Obviously, at the interface of the two media
we have the following conditions ;

(BY —B].n,=0, [HY—H®|.n, =0 (1.6)
(DY —DP]-n, =0, (EP—EP].n, =0

Here n, is the vector normal to the interface in the moving coordinate system, The
vectors which characterize the electromagnetic field under consideration in the moving
coordinate system, denoted by an asterisk, can be expressed in terms of the corresponding
fixed coordinate system <, B.y , by the formulas [1, 2]

B,=B——v,xE H,=H——v,xD
E*=E+—2-v,.><B, D*=D-;--i—vn>iH 1.7

Here v, is the velocity vector of the displacement of the interface in the direction of

the normal and n is the vector normal to the interface in the fixed system of coordinates
(e, By V)

2. Asindicated above, we will restrict owrselves to the investigation of magnetoelas-
tic oscillations in the case of small perturbations, Taking for the component of the per-
turbed electromagnetic field H=H, +h, E=e 2.1

and taking into account that the components £4, Ay, 4, and €q, €5, €y of the induced
electromagnetic field are small, we linearize Eqgs, (1.3). After some transformations
the problem reduces to the simultaneous integration of the following system of linear
differential equations (here and in the sequel the indices ; are omitted and k is the
unit vector in the direction of the coordinate line 7).
In the interior domain;
electrodynamics equations

—1{
roth = Ms[ +-1-. XB(,]—}--—- e +epw at,YkXBo
rote = —.‘:—-3—’:, divh = 0, div(e-}— 1 )=0 (2.2)

the equarions of rnotion of an elernent of the elastic shell

o,
Hz aa ‘T+‘_l (Hl HZfGY)—p atﬂ R H1H2 (2.3)
s bt, 0%upy
Hi5f + Hy— 4 - a5 (H.Hy*0) = p 5t — ReH H,
ar 61'
L+ o (HyHy0,) — 0aHy - — gy 222 =

0'\’
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du,
P ata — RH,H,

Hi=A(+ky), Hy=B(1+ky)

Here H,, H, are the Lamé coefficients and R (Hqa, R, R,) are the forces of elec-
tromagnetic origin which are determined in the following manner [3]:
s 1 48U
R=T<e+T“ETXB°)XB° (2.4)
In the exterior domain:
electrodynamics equations for vacuum

1 dele)
rot ht©) = = _;_ divh® =0 (2‘5)
rote®= — L% givew=0

Thus, k2 problem of the magnetoelastic oscillations of a thin shell has been reduced to
the simultaneous integration of the system of equations (2, 2), (2. 3) and (2, §), Obviously,
to these equations we have to adjoin the conditions at the surfaces of the shell for the
elecwomagnetic field, which are obtained from the conditions (1,7) by linearization

1 @, B—1 peo 1 %Y -1 o 4 Ou
b= g+ By + %B%

du,,

¢ ) 1 ) @ 1 o4y
hy = B L =0 P' B(e , hy = h§ + Bov"'B- po (2.6)
1 du y__Bb—1 po
e'Y = T e(e) ea == e(:) + B(()eﬁ) a; L) eB = eg - ¢ ng

Finally, we have to adjoin here also the boundary conditions at the ends of the shell
and the conditions of damping at infinity of the electromagnetic perturbations,

3, We apply the method of asymptotic integration to the system of equations (2. 2)
and (2. 3), restricting ourselves only to the construction of the fundamental jterative
process [7—-9],

As is known, the fundarmental iterative process allows us to determine the slowly dam-
ped part of the solution, which, for example in the case of the bending problem of a sheli,
gives the possibility to find in the first approximation that state of stress which character-
izes the classical shell theory, Thus, the first approximation of the fundamental jterative
process of the three-dimensional problem of the elasticity theary reduces to the two-
dimensional problem of the chell theary, constructed according to the hypothesis of non-
deformable normals [7, 8].

Following [7—9], we assume that the intensity of the electromagnetic field induced
in the shell, due to the thinness of the shell, varies slowly with respect to the variabies
a and 3 (in the median surface), while with respect to the variable ¥ (along the thick-
ness of the shell) it varies rapidly.

Expanding the scale with respect to the variable ¥. according to the formula

and taking into account (1, 5) (the electromagnetic field varies not too rapidly in time)
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and (3.1), we assume that the rapidity of the variation of the magnetic and electric field
intensities induced in the shell is not too large with respect to all fowr variables «, B,
Lt

In the following we will not give the computatjons related to the asymptotic integra~
tion of Eqs, (2. 3), since we assume that the results of [8] hold also for the problem under
consideration,

Taking into account (3, 1), we rewrite the linearized equations (2, 2) in the following
form:

1 Ok, - ah __ 4ns 1 ( dugy du, )]
T s et T B — B )|t
de — otu
€ a e —1 e
7 ot o Bos 55>
oh { 0k 4ne 1( ou, du, )]
-1 .3 —— Y —_ —
h™ =5 A oo — %+ = \Boe 5 — B )|
e aea e —1 B azu,
¢ ot F=m 0= T
4 Ohy { ©0h, 4ns 1 < du 6u9> L2 de,,
T3 TF W - e YT Bos —5 Boa—; e (82)
{ Oey 1 deg po ey |, ep—1 (Boa Pu, By azuv)_o
T % TE®R 3 T “eme \"B aBat ~ A oavt)
A % 4 O b Oh A 0 e %R
A 3x B of ¢ ot ' B 08 at c ot
(3.3)
p1 a4 9 p O A Ok 4 O L 0
3 A Ba c ot ' A 52 " B 8 a;

We write an arbitrary component of the electromagnetic field or of the displacement
of the shell in the form

5
Q= h1 2“ hs1Q® (3.4)

where ¢ is an integer, different for different components of the electromagnetic field
and of the shell displacement, This has to be chosen in such a way that, after inserting
(3.4) into Eqs, (3.2) and (3, 3) and making equal to zero in each equation the coeffici-
ents of the same powers of /4 , we should obtain a consistent sequence of systems of equa-
tions for the determination of the coefficients of the expansions (3,4), Numerous solu~
tions of the classical problems of shell theory, without considering electromagnetic ef-
fects, show that in the representations of the displacements with the formula (3, 4), the
exponent ¢ can be selected in the following manner [8]:

(4o, ug, Uy) ~q=a (3.5)

As far as the components of the induced electromagnetic field are concerned, the expo-
nent g is chosen in the following manner:

(harha,ex)—~q=0b, (A, €1, ea) >g=0b1 (3.6)
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Considering other variants of the exponent ¢ for the components of the electromag-
netic field in the representation (3. 4), we obtain a contradiction,

For ‘convenience we introduce a new notation k¥ = b — a + 1. Inserting into Egs,
(3. 3) the values of the components of the electromagnetic field of the shell from (3.4),
taking into account (3, 6) and equating the coefficients of the same powers of A in each
equation separately, we obtain the following unique (independent of k) system of equa-
tions ;

def) 4 oy e oD oef) 4 8l o ongY

3 B o ¢ ot ' & T A e ¢ ot
1 del) 1 e __ & on® ah®) 4 Pt L 3.7)
A ou B8 ~— "¢ o ' o 4 o6a B o )

Equations (3, 2), after similar transformations, taking into account of (3, 5) and (3, 6),
lead to the mutually distinct (for each value of k) systems of equations

g onY  onp __ 4ns [ @ +_( B a“g‘k) —B ou{s®) )] +
B B ~ "ot T ¢ o3 05—

e ae( s) ep— 4 B agu(l-k)

R R St

HY g MY 4w [ 1

" au(a-k) B au(o-h)
% AT 18" + < Boe 57— — Bov —r— ||+
e ac(a" e —1 B azu(;'")

T ot T T T Tam
4 oMy oMY g [(,) +__( B 8u("“+1) 3
4 6 B @ = 03 "
6ug‘k+1) )] e ae(a)
sl N | DR St 4 3.8
0z T3t T e et ' (3.8)
g 0e® g e ' ael® , ep—1 (Bo‘l oo Byg azug'-’”)_
T m TEFER T L epe B opat A oaot )

Equations (3, 7) combined with (3, 8) form, separately for every value of £ a chain of
systems of equations of the fundamental iterative process, resulting in the successive
(s=1, 2, 3,...) determination of the unknowns (X®). In this connection we have to
assume that () = 0 for s <C 1, and also, that in the construction of (Q+1) the
corresponding quantities QX1 Q(®), ..., Q%) are considered known.,

Let us consider different values of the number k. The case & <C (O does not present
any interest, since in this case, according to (3, 8), either all the components of the given
(unperturbed) magnetic field must be equal to zero or we arrive at a contradiction, con-
sisting in the superposition of additional constraints on the elastic displacements, In the
case k = 0, from Egs, (3. 8) we obtain in the first approximation of the asymptotic
integration (s = 1)

Aull! ud
053 —5%‘ —Bye——=0 (3-9)

Thus, the case & = () is possible by satisfying the condition (3, 9), which depends both
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on the velocity of the oscillations and on the magnitude of the given magnetic field,
For the nonstationary problem, this is possible in the case when By, = By = 0, i.e,
when the given magnetic field is perpendicular to the median surface of the shell, other-
wise one obtains an additional reswriction on the elastic displacements, In this connec-
tion, according to (1. 2), we note that the given magnetic field must be constant in the
coordinate system «, 3, Y. Taking By, = B, = 0, from (3, 8) we obtain the follow-
ing equations in the case £ = 0 ;

1 OR®  amyY 4ns 1
; b _ e84+ — By 50

6u(B’) } € ae&')

B 8~ 9 ~ ¢ ¢ T T Tat
O AW el 4 p WD) e )
ot . A 6a T~ ¢ B c 0ot c ot
1 ahﬁ') 1 ahf:) 4ns (s) . & 8e(:) 3.10
——— — ———— == é —— S— ( . )
A oa B af c Y 7 ¢ ot

1 9 g el e
i ot — - —
T T F e T =0

From here it is clear that for ¥ = 0, in the first approximation, the electrodynamics
equations do not separate from the equations of motion of the elastic shell,

In the case k = 1 ,Eqgs. (3, 8) show that even in the first approximation (s = 1), inde-
pendent of the given magnetic field, the electrodynamics equations donot separate from
equations of motion of the shell,

It is easy to see that for k¥ > 1 (the exponent of the intensity of the electromagnetic
field is significantly larger than the exponent of the intensity of the shell displacements),
in the first approximation, the components of the electromagnetic field can be deter-
mined independently from the elastic oscillations of the shell,

We note that in the case k < 0 , the exponent of the intensity of the eiectromagnetic
field is significantly smaller than the exponent of the intensity of the shell displace-
ments, while in the cases k = 0, k = 1 they differ little from each other,

We represent the solution of the system of equations (3. 7) and (3. 8) in the form of a
sum of two terms: Q) = Q;® -4 Q*®). The first term denotes the solution of the
homogeneous system obtained by discarding the quantities whose superscript is less than
s, while the second term denotes some particular solution of the indicated system in
which all the quantities whose superscript is less than s are considered to be known,

Let us consider the system of homogeneows equations, Far all k£ > 0 , those equations
of the homogeneous system which are obtained from all the equations of the system
(3.7) and the last equations of the systems(3.8) and (3, 10), are common and have the
form

e 3¢ty ph

—a-z— = 0. —-af—_ == 0’ T = (3.11)
1 dely) 1 ey B on" N oel®) + g e " el -0
A da B a8 c ot ' A4 da B o8 at

The remaining equations of the homogeneous system for distinct values of & are dis-
tinct and are obtained from the remaining equations of the corresponding systems(3,8)
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and (3,10) in the form

B (s) ()
rot heo) = 429 [(n)_x. Loy 907 xk]+-§—a;: k=0 (342)

)
~roth® = 4"“ [(O)+ i3 aU( X

(s)
]+—§—i§,—- k=1) (3.13)

4:10 ) ae(

rot h(® = e® + =

(k> 1) (3.14)

The system of homogeneous equations obtained in this way can be easily integrated for
each value of & . In this case, independent of k, according to (3,11), &%), eff), €%, AYY
have the following form:

e = el (@, B, 1), el = efo (%, B, 1), A = K% (2, B, 1) (3.15)
e(n) — [_1_ 0ef;g _i_ 5‘2’3]
YETSTT T B o8

According to what we have said at the beginning of Sect, 3, we also give the correspond-
ing expressions for the displacements [8]

ul) = uly (2, B, 1) = wf” (2,8, 1) (3.16)
(8) au'®
ugi) = u(’) (a, Ba t) — a4 dau;o ) u(’t) = Lga) (=, 8, t) — : '%

Now, making use of (3,15) and (3.16), from Egs, (3.12)~(3.14) we can determine A,
R{), distinct for different values of &

1 8h( ) . 4ns (e( 5) B,, aug) Byy 4 6210.()‘) ) e 3¢(s)]
A — 0 — -+ +
c

=z

A o:z c ot - ¢ 24 odaot T ot
. N )
e = L9 das (e(” o Bo oy _ B ¢ 62"’8’)) : _6.‘__39.?0]
ri—t’LB OB ¢ 20 ™ c ot c 2B opot /T ¢ ot
(k=0 (k == 0)
h(s) _ [—1_ 5h(:3 o e$ . _s_ 08“0 ] (3-1 ‘)
A =S| Ty T TG T
ons%) 4 el ]

) ! _Ams i & a0 E>1 3.18
h—{Baa e fe0 T T g k=0 (3-18)

Let us find particular solutions, The expressions i), ¢¥® p () are determined
from (3. 7) independent of &

g 0elP 1 ol
[T ox ¢ ot

-

. S ahf.f‘g) h(!—2)
h3"=—SH— — dg}dt (3.19)

*(s) __
o« =

SC o1t

] dg, e?®=

OQ/)T*

[4 2w o
B 08 Yoe ot

The remaining quantities are determined from the formulas
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,

-K) (8-K)
1 Ry s i oul’ ou .
RO §{__;_a__ + —;—{85(')-1— L Boa 2~ B )| =
5e%® i)
e % ep — 1 x 3.20
¢ "ot s Boa —5z—/ 4t (3.20)

g *(s) Guls-® au(s—}:)
4 Oh 4ns 1 u
h‘;(s)___ S{ 3 Y [ea* + - (BOY i — BoB _f_):\ —_
[}

% ¢ at
K
:(0)  em—1 B 6’u$’" )}dC
T Tat T ow TR T
. r . . » .
X _ _1_ aea(s) _1_ aea(')_!_ e —1 (Boa. 3zu5(l )— By, 02u${' ) -
’ LA 6 T B B ewe \ B B 4 et /]T°
0

where in the case k = 0 it is necessary to take B,, = By = 0.

In the formulas (3, 19), (3. 20), the quantities marked with an asterisk are functions of
the variables «, 3, {, ¢; the quantities not marked with an asterisk and having index
less than s are assumed to be known,

As indicated above, Q) == O for s << 1. Therefore from (3,19) it follows that
Q@*M) and Q*® are identically equal to zero, (Obviowsly, the same is the case in the
representation of the displacements ug,, Ug, Uy [7~9])

Examining the obtained solutions (3,15) and (3,19) of the linearized magnetoelasticity
equations, we note that in the case that the hypothesis of the nondeformable normals
holds (3,16), the components ¢,, ¢; and A, of the induced electromagnetic field, up
to the third approximation of the asymptotic integration, do not depend on the coordi-
nate (,

Thus, similar to the classical theory of thin shells {4 — 6], we can formulate the fole
lowing fundamental hypotheses for the magnetoelasticity of a thin shell (assumptions
(a) and (b) taken from the classical theory of shells, are given here for the sake of
completeness):

a) the normal to the median surface of a rectilinear element of the shell remains,
after deformation, rectilinear and normal to the deformed median surface of the shell
and preserves its length;

b) the normal stress o, can be neglected in comparison with the other stresses;

c) the tangential components of the intensity vector of the induced electric field
and the normal component of the intensity vector of the induced magnetic field do not
vary along the thickness of the shell,

Obviously, all the three assumptions have to be considered as individual parts of a
unique hypothesis, on the basis of which the three-dimensional problem of the magneto-
elasticity of a continuous body reduces to the two-dimensional magnetoelasticity prob-
lem of a thin shell,

4, The above formulated fundamental hypotheses for the interior problem can be
written analytically in the following manner:

. Y ow - T ow __
Uz = U — — ==, u_e,—b-—-F—w, Uy = W (4.1)
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Here u v, w- are the desired displacements of the median surface of the shell; @, V¥,
/ are the desired functions of the excited elecromagnetic field (all quantities are funce
tions of . {3, ).

The equations of motion (2, 3) of the electrically conducting shell can be written in
terms of forces and moments in the form
L% L i’;?ﬁ. =20n 2% _ %, (4.2)
T e = Wk — X
T+ B+ e

1 om, .
(iTa+ kTe) = P — Xy — ¢ = — o ®

Here Tqo, T, Top, My, Mg, M, are the interior forces and moments, which in

terms of the displacements of the median surface can be represented by the usual elas-
ticity relations [4 ~ 6]

2En (1 ou . 20Eh [ 1 dv
To = 1% (558 + k) + T (g + )
2Eh 1 v 2vEh (1 du |
Ta=1—% (’F‘Taé"f'kzw)'*'u—vz (T'b?"’klw) (4.3)
7o — R 1av|16u> M___ths 1 Pw
BETY (Tr"aa""‘E B ) a8 = T 3 —v) AB 9B
M. = 2ER? 1 % Ly 32w)
Ma=="5q=—vw \" A oa2 &= B o )
2Eh3 1 fw v ow
My =— 31— v <'B"2‘ i —acT'z)

where P is the normal component of the exterior surface load, X (X, Xp, Xy),
m (mq, Mmp, My) are the forces and moments of electromagnetic origin which accord-
ing to (2.4) are determined in the following manner:
h h
X= S Rdx, m= S Rydy

—=h

(4.4)

For the remaining components %,, kg, e, of the electromagnetic field inside the shell,

we obtain from Egs, (2.2) by integration with respect 1o ¥ from zero to ¥ and by taking
into account (4,1) and the surface conditions (2, 6)

hy,* 4 h,~ 1 8f e A |, 4nms
= ———l L LA S Wkt _
he = 2 T (Aaa“"c at c¢>‘
4ns w . a 0w —a iu_ " g — 1 a 2w
F\%GT T W 5mar  *% )T Tam TR

N ho* - hyT 4 of £ 8¢  4nG )
5 = e — ¢
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e =M_7/.La_q)___i_é‘i> _ew—1/ 1w 1w
=St E T S (e T Ee T S TR
¥ n —h
1 /¢ .
a; = SBOth - T(SBde ’l—' S Bo;d'{) (i==a, ﬁ, )
0 h $

Y n -h
a= S YBwdt — %—(STdeY + \'erd'r >
0 0 [
The plus and minus superscripts indicate the values of the corresponding quantities for
y=~hand y = —h.

Thus, all the components of the electromagnetic field of the shell, the forces and the
moments which occur in the magnetoelastic equations of the shell, can be represented
by six unknown functions (u, v, w, @, ¥, f) and by the values of the components &,
hg, eyof the elecomagnetic tield at the surfaces of the shell,

If we restrict ourselves to the investigation of the proper problems of the mechanics
of an elastic shell, then, as we will see, the fundamental resolvent equations will contain
only the unknown function of the values of the normal component of the electric field
at the surfaces of the shell (y = =+ k).

The values of e, at the surfaces of the shell can be represented in terms of the unknown
functions in the following manner:

em_Afpr O _pe h v g e B o
&' =—= [BOB a7 — Boe T 50 — MW*"BM'B-apat]
(4.6)
e A [pbu b Pw - o h 3w
o =~ [BuGr + By gy — B 5y — B 5 o

Formulas (4. 6) are obtained from the condition of the vanishing of the normat compon-
ent of the current density on the surfaces ¥ = - A, i, e, from the condition (since the

shell is in vacuum) . [e N 'i" -(aTIi' % -B,,)]-n =0 (4.7)

5. It remains o write out the resolving equations relative to the six unknown func-
tions of the problem, They can be obtained from the consideration of the simultaneous
equations of magnetoelasticity,

Substituting into the motion equations (4, 2) of the shell the values of the interior
forces and moments from (4. 3), as well as the forces and moments of electromagnetic
origin from (4, 4), we obtain, taking into account (4, 5) and (4, 6)
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Substituting the values of the displacement components and the electromagnetic field
from (4. 1) and (4. 5) into the electrodynamics equations, taking into 2ccount (4, 6) and
averaging over the thickness of the shell, as it is done in the theory of shelis, we obtain

the following three fundamental equations: )
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In addition to Egs. (5.2) we also obtain the following conditions which establish the cone
nection between the surface values of the components of the elecromagnetic field

strength :
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Equations (5.1) and (5,2) form a complete system of six equations with respect to the
six upknown functions, It should be noted here that the system of equations (5.1),(5.2)
does not contain explicitly the elements of the solution of the exterior problem; this is
explained by the acceptance of the fundamental hypothesis,

The relation between the interior and the exterior problems is realized through the
boundary conditions for the unknown functions ¢, P, f at the ends of the shell, We
note that in some particular cases we can have conditions at the ends of the shell for
which the interior probiem is completely separated from the exterior one, We also note
that the conditions (5, 3) must be used as boundary conditions for the solution of the ini-
tial equations (1, 4) of the exterior problem,

In order to solve concrete boundary value problems, we have to adjoin to the resolving
differential equations (5.1), (5. 2), the boundary conditions for the components of the
electromagnetic field, as well as the usual conditions regarding the fixing of the edges
of the shell,

The conditions for the components of the electromagpetic field are obtained from
(1.6) where we take into account (1, 5) and (1. 7) and where n is the normal to the cor-
responding end surface, For the end surface o = const we have

n=i___(6u Y 6’-'10} 1 6wk, Oua
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Therefore the linearized boundary conditions can be written in the following form:
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In a similar manner one can write the conditions at the end swwface 3 = const. In the
cpecial case when the end surfaces are in vacuum, it is advisable to make e of condition
(4. 7), since this condition does not contain elements of the solution of the exterior prob-
lem, Then, for example, we have for the end surface & = const

e =2 [ B % — Bor (S — S35 (5.5)

In the case when the shell is fixed along the considered edge with a resting ideal conduc-
tor, the interior problem is solved independently of the exterior one, This is explained
by the fact that in a fixed ideal conductor the electric field is absent, i, e, the exterior
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electric field is equal to zero (e = e’ = ¢¢ = 0). Then, the boundary conditions
(5. 4) for the components of the electric field obtain the form

_ _ b=t ou T w
=0, &= (at_‘Z‘aaat>
=— (0 __T_ﬂ)
& = B ( at 4 dagt (5.6)

Thus, examining the resolving equations (5.1), (5. 2) which describe the oscillations
of the shell, we note that they do not contain the components of the exterior induced
elecromagnetic field, The connection with the exterior domain (with the exterior prob-
lem) is accomplished only through the boundary conditions at the ends, In particular,
when the boundary conditions do not contain the elements of the solutfon of the exterior
problem, for example the conditions (5. 6), the problem of the oscillation of the shell is
solved independently of the exterior problem,

As an example we give some variants of boundary conditions ( necessary for solving
the system of equations (5.1),(5.2)) in the case when the shell is in contact at the edges
with an ideal conductor, We give the conditions for the edge o= const.

Clamped edge

u=0 v=0 w=0,0wd=0 =0 yy=0
Fixed-hinged edge
u=0, v=0, wd®=0,¢=0,¢9=0
Hinged=-supported edge
v=0, w=0, GuPa=0, Fwoet=0 o¢=0 p=5=lpg® ..‘21‘.
In a similar way we can write down the boundary conditions for the edge B == const.

8. For some particular cases of the exterior magnetic field, the resolving equations
(5.1),(5.2) for concrete types of shell and plates become entirely suitable for solving
concrete problems, We consider some of them,

Plate with a constant exterior magnetic field
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Circular cylindrical shell with radius of curvatwe R, situated in a constant exterior
magnetic field whose intensity vector is parallel to the elements of the cylinder, The
coordinates & and {3 are chosen such that the coefficients of the first quadratic form

should have the values 4 = 1, B = R
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Shallow shell with double curvature, situated in a constant exterior magnetic fieid
whose intensity vector is perpendicular to the median surface of the shell, The coordi-

nates & and (3 are chosensuch that 4 = 1, B = 1
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Adjoining to the given resolving equations the necessary boundary conditions, we can
find the solution of numerous magnetoelasticity problems for plates and shells, It is
also necessary to keep in mind that in each of the considered problems the conditions

(5. 3) must be satisfied,
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Thus, on the basis of the three-dimensional magnetoelasticity equations, a correct
two-dimensional theory of shells and plates of finite conductivity has been constructed,
This theory allows us to solve magnetoelasticity problems for shells and plates having
finite dimensions,

The authors are grateful to A, L, Gol'denveizer for discussing the research and for
valuable comments,
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Values of the upper critical buckling loads of nonsymmetric strictly convex elas-
tic shallow shells are determined when the relative wall thickness parameter is
sufficiently small, Simple relationships are derived from which the mentioned
values can be found if the character of the loading, the shell geomeury, and the
method of fixing the edge are known, In passing, asymptotic expansions of the
solutions permitting a computation of the stress-strain state of shell in the precri-
tical stage are constructed for the appropriate boundary value problems, As an



